Paper Reference(s)

6684/01 Edexcel GCE

Statistics S2

Advanced Level

Tuesday 17 January 2012 – Morning

Time: 1 hour 30 minutes

Materials required for examination Mathematical Formulae (Pink) Items included with question papers Nil

Candidates may use any calculator allowed by the regulations of the Joint Council for Qualifications. Calculators must not have the facility for symbolic algebra manipulation, differentiation and integration, or have retrievable mathematical formulas stored in them.

Instructions to Candidates

In the boxes on the answer book, write the name of the examining body (Edexcel), your centre number, candidate number, the unit title (Statistics S2), the paper reference (6684), your surname, other name and signature.

Values from the statistical tables should be quoted in full. When a calculator is used, the answer should be given to an appropriate degree of accuracy.

Information for Candidates

A booklet 'Mathematical Formulae and Statistical Tables' is provided. Full marks may be obtained for answers to ALL questions. This paper has 7 questions. The total mark for this paper is 75.

Advice to Candidates

You must ensure that your answers to parts of questions are clearly labelled. You must show sufficient working to make your methods clear to the Examiner. Answers without working may not gain full credit.

P40700A This publication may only be reproduced in accordance with Edexcel Limited copyright policy ©2012 Edexcel Limited

1. The time in minutes that Elaine takes to checkout at her local supermarket follows a continuous uniform distribution defined over the interval [3, 9].

Find

(a) Elaine's expected checkout time,	(1)
(b) the variance of the time taken to checkout at the supermarket,	(2)
(c) the probability that Elaine will take more than 7 minutes to checkout.	(2)
Given that Elaine has already spent 4 minutes at the checkout,	
(<i>d</i>) find the probability that she will take a total of less than 6 minutes to checkout.	(3)
David claims that the weather forecasts produced by local radio are no better than those a	achieved

2. David claims that the weather forecasts produced by local radio are no better than those achieved by tossing a fair coin and predicting rain if a head is obtained or no rain if a tail is obtained. He records the weather for 30 randomly selected days. The local radio forecast is correct on 21 of these days.

Test David's claim at the 5% level of significance.

State your hypotheses clearly.

(7)

(2)

(2)

3. The probability of a telesales representative making a sale on a customer call is 0.15.

Find the probability that

- (*a*) no sales are made in 10 calls,
- (b) more than 3 sales are made in 20 calls.

Representatives are required to achieve a mean of at least 5 sales each day.

- (c) Find the least number of calls each day a representative should make to achieve this requirement.
- (*d*) Calculate the least number of calls that need to be made by a representative for the probability of at least 1 sale to exceed 0.95.

P40700A

(2) the

(3)

4. A website receives hits at a rate of 300 per hour.

(<i>a</i>) State a distribution that is suitable to model the number of hits obtained during a 1 minute interval.
(1)
(b) State two reasons for your answer to part (a). (2)
Find the probability of
(c) 10 hits in a given minute, (3)
(d) at least 15 hits in 2 minutes. (3)
The website will go down if there are more than 70 hits in 10 minutes.
(e) Using a suitable approximation, find the probability that the website will go down in a particular 10 minute interval.
(7)
The probability of an electrical component being defective is 0.075. The component is supplied in boxes of 120.
(<i>a</i>) Using a suitable approximation, estimate the probability that there are more than 3 defective components in a box.
(5)
A retailer buys 2 boxes of components.

(b) Estimate the probability that there are at least 4 defective components in each box.

(2)

5.

6. A random variable *X* has probability density function given by

$$f(x) = \begin{cases} \frac{1}{2}, & 0 \le x < 1, \\ x - \frac{1}{2}, & 1 \le x \le k, \\ 0 & \text{otherwise,} \end{cases}$$

where *k* is a positive constant.

(a) Sketch the graph of f(x). (2)

(b) Show that
$$k = \frac{1}{2}(1 + \sqrt{5})$$
. (4)

(c) Define fully the cumulative distribution function F(x).

(6)

(d) Find
$$P(0.5 < X < 1.5)$$
. (2)

- 7. (*a*) Explain briefly what you understand by
 - (i) a critical region of a test statistic,
 - (ii) the level of significance of a hypothesis test.
 - (b) An estate agent has been selling houses at a rate of 8 per month. She believes that the rate of sales will decrease in the next month.
 - (i) Using a 5% level of significance, find the critical region for a one tailed test of the hypothesis that the rate of sales will decrease from 8 per month.
 - (ii) Write down the actual significance level of the test in part (b)(i).

(3)

(2)

The estate agent is surprised to find that she actually sold 13 houses in the next month. She now claims that this is evidence of an increase in the rate of sales per month.

(c) Test the estate agent's claim at the 5% level of significance. State your hypotheses clearly.

(5)

TOTAL FOR PAPER: 75 MARKS

END

Turn over

January 2012 6684 Statistics S2 Mark Scheme

Question Number	Scheme		
1 (a)	$E(X) = \frac{9+3}{2} = 6$	B1	(1)
(b)	$Var(X) = \frac{(9-3)^2}{12} = 3$	M1A1	(2)
(c)	$P(X > 7) = (9 - 7) \times \frac{1}{6} = \frac{1}{3}$	M1A1	(2)
(d)	$P(X < 6 X > 4) = \frac{P(4 < X < 6)}{P(X > 4)}$	M1A1	(2)
	$=\frac{\frac{2}{6}}{\frac{5}{6}}=\frac{2}{5}$	A1	
	$\frac{5}{6}$		(3) 8
	Notes		
(b)	M1 $\frac{(9-3)^2}{12}$ or $\frac{(9+3)^2}{12}$		
(c)	M1 $\frac{(9-7)}{6}$ or $1 - \frac{(7-3)}{6}$ or $\int_{7}^{9} \frac{1}{6} dx$ or $1 - \int_{3}^{7} \frac{1}{6} dx$ A1 Also acceptable 0.3, 0.33 and awrt 0.333		
(d)	M1 $\frac{P(4 < X < 6)}{P(X > 4)}$ or $\frac{P(X < 6)}{P(X > 4)}$ or $\frac{\frac{2}{6}}{\frac{5}{6}}$ or $\frac{\frac{3}{6}}{\frac{5}{6}}$ or $1 - \frac{P(X > 6)}{P(X > 4)}$ or $\frac{6 - 4}{9 - 4}$ or $\frac{3}{5}$		
	A1 $\frac{P(4 < X < 6)}{P(X > 4)}$ or $\frac{\frac{2}{6}}{\frac{5}{6}}$ or $1 - \frac{P(X > 6)}{P(X > 4)}$ or $\frac{6 - 4}{9 - 4}$		
	An answer of $\frac{2}{5}$ gains all 3 marks.		
	$NB \le and \ge are accepted in the above formulae$		

Question Number	Scheme	Marks				
2	$H_0: p = 0.5$ $H_1: p > 0.5$	B1 B1				
	$X \sim B(30,0.5)$ Using correct Bin	M1				
	$P(X \ge 21) = 1 - P(X \le 20)$ or $P(X \le 19) = 0.9506$ $P(X \ge 20) = 0.0494$	M1				
	= 1 - 0.9786					
	$= 0.0214$ CR $X \ge 20$	A1				
	so significant/reject H_0 /in Critical region	M1 dep				
	Evidence to suggest David's claim is incorrect	A1				
	or The weather <u>forecast</u> produced by the local <u>radio</u> is better than those achieved by <u>tossing/flipping a coin</u>	(7)				
		7				
	SC If both hypotheses are correct but a different letter to <i>p</i> is used they get B1 B0. If no le used they get B0 B0. 1^{st} M1 writing or using B(30,0.5) <u>One tail</u> 2^{nd} M1 for writing or using 1 - P(X \le 20) or writing P(X \le 19) = 0.9506 or P(X \ge 20) = 0.0494. implied by correct CR.or probability = 0.0214 A1 for 0.0214 or CR $X \ge 20/X > 19$. NB P(X \le 20) = 0.9786 on its own scores M1A1 3^{rd} M1 dependent on the 2^{nd} M1 being awarded. For a correct statement based on the table below					
	allow non-contextual conflicting statements eg "significant" and "accept H_0 ". Ignore compari 2 nd A1 for a correct contextualised statement. NB A correct contextual statement on its own sco					
	$0.05 p < 0.05 or p > 0.953^{rd} M1not significant/ accept H0/ Not in CRsignificant/ reject H0/ In CR$					
	3^{rd} M1not significant/ accept H ₀ / Not in CRsignificant/ reject H ₀ / In CR 2^{nd} A1David's claim is correctDavid's claim incorrect					
	weather forecast produced by the local radio is no better than those achieved by better than those achieved by tossing/fli					
	tossing/flipping a coin <u>coin</u>					
	. May be ow. Do not sons . pres M1A1.					
	$0.025 p < 0.025 or p > 0.975 3^{rd} M1 not significant/ accept H0/ Not in CR significant/ reject H0/ In CR$					
	2 nd A1 David's .claim is correct weather <u>forecast</u> produced by the local <u>radio</u> is no better than those achieved by tossing/flipping a coin David's claim incorrect weather <u>forecast</u> produced by the local <u>radio</u> is better than those achieved by tossing/flipping a coin	dio				
		I				
Question	Scheme	Marks				

Number				
3 (a)	$P(X = 0) = 0.85^{10}$ or from tables		M1	
	= 0.1969 awrt 0.197	7	A1	
(b)	$P(X > 3) = 1 - P(X \le 3)$		M1	(2)
	=1-0.6477 = 0.3523 awrt 0.352		A1	
(c)	$n \times 0.15 = 5$		M1	(2)
	n = 33 or 34		A1	
(d)	1 - P(X = 0) > 0.95		M1	(2)
	$\begin{array}{l} 1 - (0.85)^n > 0.95. \\ 0.85^n < 0.05 \end{array}$		A1	
	<i>n</i> >18.4			
	<i>n</i> = 19		A1	(3) 9
	Notes			
(a)	M1 $(p)^{10}$ with 0			
(b)	M1writing or using 1 - P($X \le 3$)			
(c)	M1 $np = 5$ 0			
(d)	M1 writing or using 1 - P(X = 0) > 0.95 or P(X = 0) < 0.05 (also accepted are = and = or \leq instead of or <) P(X \leq 0) is equivalent to P(X = 0) A1 writing or using 1 - (0.85) ⁿ > 0.95 or (0.85) ⁿ < 0.05 (also accepted are \geq instead of or <). Any value of <i>n</i> may be used A1 cao			
	NB an answer of 18.4 gets M1 A1 A0			
	An answer of 19 gets M1 A1 A1 unless it follows from clearly incorrect worki	ng.		

Question Number	Scheme		
4 (a)	Poisson	B1	(1)
(b)	Hits occur singly in time Hits are independent <u>or</u> Hits occur randomly Hits occur at a constant rate	B1B1	(2)
(c)	<i>X</i> ~ Po(5)	B1	
	$P(X = 10) = P(X \le 10) - P(X \le 9)$ or $\frac{e^{-5} 5^{10}}{10!}$	M1	
	= 0.9863 - 0.9682 = 0.0181 awrt 0.0181	A1	(3)
(d)	<i>X</i> ~ Po(10)	B1	(3)
	$P(X \ge 15) = 1 - P(X \le 14)$	M1	
	= 1 - 0.9165 = 0.0835 awrt 0 .0835	A1	(3)
(e)	X~ Po(50)	DIDI	(-)
	Approximated by N(50,50) $P(X > 70) = P\left(Z > \frac{70.5 - 50}{\sqrt{50}}\right)$	B1B1 M1M1	
	= P(Z > 2.899)	A1	
	=1-0.9981	M1	
	= 0.0019 awrt 0.0019	A1	(7)
			(7) 16
(b) (c)	Notes 1st B1 Any one of the 3 statements - no context required. NB It must be a constant (mean) rate constant probability or a constant mean. 2nd B1 A different statement with context of <u>hits.</u> NB random and independent are the same s If only one mark awarded give the 1st B1. Never award B0 B1 B1 writing or using Po(5) M1 = $\frac{1}{2}$ = $\frac{1}{2}$ = $\frac{1}{2}$		
	M1 writing or using P(X \le 10) - P(X \le 9) or $\frac{e^{-5}5^{10}}{10!}$		
(d)	B1 writing or using Po(10) M1 writing or using 1- P($X \le 14$)		
(e)	1st B1 for a normal approximation 2nd B1 for correct mean and sd (may be seen in standardi 1st M1 for attempting a continuity correction (71± 0.5) 2nd M1 Standardising using their mean and their sd and using [69.5, 70, 70.5, 71 or 71.5] allo NB if they have not written down a mean and sd then they need to be correct in the standardisa this mark. 1st A1 for $z = \pm$ awrt 2.9 or better. May be awarded for $\pm \frac{70.5 - 50}{\sqrt{50}}$	w±z	
	$\sqrt{50}$ 3rd M1 for 1 - tables value		
	SC using P(X< 70.5/71.5) – P(X<69.5/70.5) can get B1B1 M0M1A0 M0A0		

Question Number	Scheme	Mark	S
5 (a)	<i>X</i> ~ B(120,0.075)	B1	
	Approximated by Po(9) $P(X > 3) = 1 - P(X \le 3)$ $= 1 - 0.0212$	M1A1 M1	
	= 0.9788 awrt 0.979	A1	(5)
(b)	P(At least 4 defective components in each box) =P(X>3)×P(X>3)	M1	(3)
	$= 0.9788^{2}$ = 0.95804944 awrt 0.958	A1	(2) 7
(a)	Notes B1 Writing or use of B(120,0.075) may be implied by using Po(9) or N(9,8.325) 1st M1 writing or use of Poisson 1st A1 writing or use of Po(9) 2nd M1 for writing or using 1- P($X \le 3$) or this may be implied by an awrt 0.972 using normal approximation.		
(b)	M1 ((their (a)) ² or 0.979^2 or 0.9788^2 or 0.98^2		

Question Number	Scheme	Marks
--------------------	--------	-------

6 (a)	f(x)	
	k-0.5 shape	B1
	0.5 labels	B1
	<u> </u> ►	
	$\begin{vmatrix} 0 \\ 1 \\ k \\ x \end{vmatrix}$	(2)
(b)	$\int_{1}^{k} \left(x - \frac{1}{2}\right) dx = \frac{1}{2}$ $\left[\frac{1}{2}x^{2} - \frac{1}{2}x\right]_{1}^{k} = \frac{1}{2}$ $k^{2} - k - 1 = 0 \text{o.e.}$ $k = \frac{1}{2}(1 + \sqrt{5})$	M1
	$\int_{1}^{1} (2)^{-1} 2$	1411
	$\left[\left[\frac{1}{x^2} - \frac{1}{x} \right]^k = \frac{1}{x} \right]$	
	$\begin{bmatrix} 2^n & 2^n \end{bmatrix}_1 2$	A1
	k - k - 1 = 0 0.e. $k = \frac{1}{1 + \sqrt{5}}$	M1A1 cso
	$k = \frac{1}{2} (1 + \sqrt{3})$	(4)
(c)	$\begin{bmatrix} 0 & r < 0 \end{bmatrix}$	
	$\frac{1}{1}r \qquad 0 \le r \le 1$	B1
	$F(x) = \begin{cases} 0, & x < 0\\ \frac{1}{2}x, & 0 \le x < 1\\ \frac{1}{2}x^2 - \frac{1}{2}x + \frac{1}{2}, 1 \le x \le k\\ 1, & x > k \end{cases}$	
	$\left \frac{1}{2}x^2 - \frac{1}{2}x + \frac{1}{2}, 1 \le x \le k\right $	M1A1A1B1
	$\begin{bmatrix} 1, & x > k \\ \text{Note: Working for the M1A1A1} \end{bmatrix}$	B1 1st and last (6)
	$\int_{1}^{k} x - \frac{1}{2} dx + C = \frac{1}{2} x^{2} - \frac{1}{2} x ; + \frac{1}{2}$	(M1A1;A1)
(d)	P(0.5 < X < 1.5) = F(1.5) - F(0.5) = 0.875 - 0.25	M1
	= 0.625	A1 (2)
(e)	Median is $x = 1$	B1
(6)		
	Mode is $x = k \text{ or } \frac{1}{2}(1 + \sqrt{5})$ or awrt1.62	B1 (2)
(f)	Negative skew Modion smooth on from graph more values are to the right	B1
	Median <mode are="" from="" graph="" more="" or="" right.<="" th="" the="" to="" values=""><th>B1d (2)</th></mode>	B1d (2)
		18
(a)	Notes 1st B1 Correct shape with straight lines. Must all be above the <i>x</i> -axis	
	2nd B1 A fully correct graph with the labels 1, k , 0.5, k - 0.5 seen in the correct places.	
	Allow the use of $\frac{1}{2}(1+\sqrt{5})/a$ wrt 1.62 instead of <i>k</i> .	

1		1
(b)	1st M1 $\int_{1}^{k} x - \frac{1}{2} dx = 0.5$	
	or $\int_{1}^{k} x - \frac{1}{2} dx + 0.5 = 1$ ignore limits	
	or $\int_{1}^{k} x - \frac{1}{2} dx + \int_{1}^{k} \frac{1}{2} dx = 1$	
	or $\frac{1}{2}(k-0.5+0.5)(k-1) = 0.5$ or any correct method of finding the area	
	1st A1 for a quadratic equation in the form $a(k^2 - k - 1) = 0$ or $ak^2 - ak = a$. where <i>a</i> is a constate 2^{nd} M1 correct method for solving a quadratic of the form $ak^2 - bk + c = 0$ where $a,b,c \neq 0$. The must be at least one correct step before the final answer. Allow substituting in <i>k</i> into a quadratic the form $ak^2 - bk + c = 0$.	There
	$2^{nd} A1$ cso for $k = \frac{1}{2}(1+\sqrt{5})$	
(c)	1st B1 for second line. Do not penalise the use of $<$ instead of \leq and vice versa	
	M1 for use of $\int_{1}^{k} x - \frac{1}{2} dx + C$ ignore limits. For use they must have $x \to x^{2}$	
	1st A1 correct integration $\frac{1}{2}x^2 - \frac{1}{2}x$	
	2nd A1 C = $\frac{1}{2}$	
	NB M1A1A1 may be implied by correct 3rd line in $F(x)$	
	2nd B1 for 3rd line. Statement of the form $\frac{1}{2}x^2 - \frac{1}{2}x \pm C$. Do not penalise the use of < instead of \leq	≤ and
	vice versa. Allow k or value of k. C may equal 0. 3rd B1 for first and last line. Do not penalise the use of \leq instead of $<$ and \geq instead of $>$.	
	Allow k or value of k	
(d)	M1 <u>Using</u> $F(1.5) - F(0.5) \cdot 1.5$ must be put into the third line of the c.d.f. and 0.5 must be put into the second line of the c.d.f	
	or $\int_{0.5}^{1} \frac{1}{2} x dx + \int_{1}^{1.5} x - \frac{1}{2} dx$ need to attempt integration, at least one $x^n \rightarrow x^{n+1}$	
	or seeing $0.25 + 0.375$ or any correct method of finding the area (NB if they have not used + C or C = 0 they will get 0.125. This will get M1A0). An answer	
(e)	of 0.125 from an incorrect method gains M0 A0. If it is not clear which one is the mode and which one is the median assume the median is the	
(f)	first answer and mode the second. B1 negative/negative skew(ness). Do not allow negative correlation.	
	B1 dependent on previous B mark being awarded. Reason must follow from their values or diagram.	

Question Number	Scheme	Marks
7 (a) (i)	The range of values/region/area/set of values of the test statistic that would lead you	B1
(a) (ii)	to reject H_0 The probability of incorrectly rejecting H_0 or	B1
	Probability of rejecting H_0 when H_0 is true	(2)

(b) (i)	<i>X</i> ~Po(8)				M1	
	$P(X \le 4)$	0 = 0.0996				
		= 0.0424				
	. ,	egion [0,3]			A1	
(b) (ii)	awrt 0.04	-24			B1	(3)
(c)	$H_0: \lambda = \delta$	8 (or $\mu = 8$)			B1	
	-	3 (or $\mu > 8$)				
	-	$= 1 - P(X \le 12)$	or $P(X \leq 1)$	3) = 0.9658	M1	
	````		or $P(X \ge 1)$	-		
		= 1 - 0.9362				
		= 0.0638	$\operatorname{CR} X \ge 14$		A1	
	so insuff	icient evidence to reject 1	$H_0$ /not significant/ no	ot in critical region	M1 dep	
			Ũ	n the <u>rate/number</u> of sales per	A1	
Notes	month	or the estate agents clain	n is incorrect			(5) <b>10</b>
(a)(i)	Allow acce	pt $H_1$ instead of reject $H_0$ . It m	ust be clear which hype	othesis gets rejected/accented		10
(ii)		valent wording.	ust be clear which hype	inesis gets rejected accepted.		
(li) (b)	-	g or using Po(8). May be impli	ed by correct critical re-	gion	I	
(0)			-	ed but not $P(X \le 3)$ . This must be on its		
(C)		potheses correct. Must use $\lambda$		So but not $\Gamma(X \leq 5)$ . This must be on its	S Own.	
(0)	<u>One tail</u>	potneses correct. Must use 70	$\mu$ .			
	1 st M1 for		or writing $P(X \le 13) =$	0.9658 or $P(X \ge 14) = 0.0342$ . May be	mplied by	
		.or probability = $0.0638$ 0638 or $X \ge 14$ . Allow $X > 13$ .	NB P( $X < 12$ ) - 0.9362	on its own scores M1A1		
	$2^{nd}$ M1 de	pendent on the 1 st M1 being av	warded. For a correct sta	atement based on the table below. Do no	ot allow non	1-
		conflicting statements eg "not		H ₀ ". Ignore comparisons. extual statement on its own scores M1A	1	
		$0.05$	ient. IND A contect conte	p < 0.05 or $p > 0.95$	1.	ן ר
	$2^{nd}$ M1	not significant/ accept H ₀ / No		significant/ reject H ₀ / In CR		_
	$2^{nd} A1$	Insufficient evidence of an in <b>rate/number</b> of sales per mo		Sufficient evidence of an increase/char rate/number of sales per month	inge in the	
	Two tail					
			or writing $P(X \le 14) =$	0.9827 or $P(X \ge 15) = 0.0173$ . May be i	mplied by	
		.or probability = $0.0638$ 538 or $X \ge 15$ . Allow $X > 14$ . N	IB P(X < 12) = 0.9362 orbital	n its own scores M1A1		
	2 nd M1 dep	pendent on the 1 st M1 being aw	arded . For a correct sta	tement based on the table below. Do not	ot allow non	l-
	contextual $2^{nd} \Delta 1$ for	conflicting statements eg "not	significant" and "reject	H ₀ ". <u>Ignore comparisons</u> . extual statement on its own scores M1A	1	
		$0.025$		p < 0.025 or $p > 0.975$	1.	1
	$2^{nd}$ M1	not significant/ accept H ₀ / No		significant/ reject H ₀ / In CR		]
	$2^{nd} A1$	Insufficient evidence of an in	e	Sufficient evidence of an increase/char	nge in the	
	rate/number of sales per month rate/number of sales per month					